斐波那契数

365投注被限制可以解除吗 时间: 2025-08-05 14:25:41 作者: admin 查阅次数: 4395 公众评价: 659
斐波那契数

為求得斐波那契數列的一般表達式,可以藉助線性代數的方法。高中的初等數學知識也能求出。

初等代數解法

编辑

已知:

a

1

=

1

{\displaystyle a_{1}=1}

a

2

=

1

{\displaystyle a_{2}=1}

a

n

=

a

n

1

+

a

n

2

{\displaystyle a_{n}=a_{n-1}+a_{n-2}}

(n≥3)

首先構建等比數列

编辑

a

n

+

α

a

n

1

=

β

(

a

n

1

+

α

a

n

2

)

{\displaystyle a_{n}+\alpha a_{n-1}=\beta (a_{n-1}+\alpha a_{n-2})}

化簡得

a

n

=

(

β

α

)

a

n

1

+

α

β

a

n

2

{\displaystyle a_{n}=(\beta -\alpha )a_{n-1}+\alpha \beta a_{n-2}}

比較係數可得:

{

β

α

=

1

α

β

=

1

{\displaystyle {\begin{cases}\beta -\alpha =1\\\alpha \beta =1\end{cases}}}

不妨設

β

>

0

,

α

>

0

{\displaystyle \beta >0,\alpha >0}

解得:

{

α

=

5

1

2

β

=

5

+

1

2

{\displaystyle {\begin{cases}\alpha ={\dfrac {{\sqrt {5}}-1}{2}}\\\beta ={\dfrac {{\sqrt {5}}+1}{2}}\end{cases}}}

又因为有

a

n

+

α

a

n

1

=

β

(

a

n

1

+

α

a

n

2

)

{\displaystyle a_{n}+\alpha a_{n-1}=\beta (a_{n-1}+\alpha a_{n-2})}

{

a

n

+

α

a

n

1

}

{\displaystyle \left\{a_{n}+\alpha a_{n-1}\right\}}

為等比數列。

求出數列{an+αan-1}

编辑

由以上可得:

a

n

+

1

+

α

a

n

=

(

a

2

+

α

a

1

)

β

n

1

=

(

1

+

α

)

β

n

1

=

β

n

{\displaystyle {\begin{aligned}a_{n+1}+\alpha a_{n}&=(a_{2}+\alpha a_{1})\beta ^{n-1}\\&=(1+\alpha )\beta ^{n-1}\\&=\beta ^{n}\\\end{aligned}}}

變形得:

a

n

+

1

β

n

+

1

+

α

β

a

n

β

n

=

1

β

{\displaystyle {\frac {a_{n+1}}{\beta ^{n+1}}}+{\frac {\alpha }{\beta }}\cdot {\frac {a_{n}}{\beta ^{n}}}={\frac {1}{\beta }}}

b

n

=

a

n

β

n

{\displaystyle b_{n}={\frac {a_{n}}{\beta ^{n}}}}

求數列{bn}進而得到{an}

编辑

b

n

+

1

+

α

β

b

n

=

1

β

{\displaystyle b_{n+1}+{\frac {\alpha }{\beta }}b_{n}={\frac {1}{\beta }}}

b

n

+

1

+

λ

=

α

β

(

b

n

+

λ

)

{\displaystyle b_{n+1}+\lambda =-{\frac {\alpha }{\beta }}(b_{n}+\lambda )}

,解得

λ

=

1

α

+

β

{\displaystyle \lambda =-{\frac {1}{\alpha +\beta }}}

故數列

{

b

n

+

λ

}

{\displaystyle \left\{b_{n}+\lambda \right\}}

為等比數列

b

n

+

λ

=

(

α

β

)

n

1

(

b

1

+

λ

)

{\displaystyle b_{n}+\lambda =\left(-{\frac {\alpha }{\beta }}\right)^{n-1}\left(b_{1}+\lambda \right)}

。而

b

1

=

a

1

β

=

1

β

{\displaystyle b_{1}={\frac {a_{1}}{\beta }}={\frac {1}{\beta }}}

故有

b

n

+

λ

=

(

α

β

)

n

1

(

1

β

+

λ

)

{\displaystyle b_{n}+\lambda =\left(-{\frac {\alpha }{\beta }}\right)^{n-1}\left({\frac {1}{\beta }}+\lambda \right)}

又有

{

α

=

5

1

2

β

=

5

+

1

2

{\displaystyle {\begin{cases}\alpha ={\dfrac {{\sqrt {5}}-1}{2}}\\\beta ={\dfrac {{\sqrt {5}}+1}{2}}\end{cases}}}

b

n

=

a

n

β

n

{\displaystyle b_{n}={\frac {a_{n}}{\beta ^{n}}}}

可得

a

n

=

5

5

[

(

1

+

5

2

)

n

(

1

5

2

)

n

]

{\displaystyle a_{n}={\frac {\sqrt {5}}{5}}\cdot \left[\left({\frac {1+{\sqrt {5}}}{2}}\right)^{n}-\left({\frac {1-{\sqrt {5}}}{2}}\right)^{n}\right]}

得出

a

n

{\displaystyle {a_{n}}}

表達式,稱比內公式(Binet's Formula)

a

n

=

5

5

[

(

1

+

5

2

)

n

(

1

5

2

)

n

]

{\displaystyle a_{n}={\frac {\sqrt {5}}{5}}\cdot \left[\left({\frac {1+{\sqrt {5}}}{2}}\right)^{n}-\left({\frac {1-{\sqrt {5}}}{2}}\right)^{n}\right]}

用數學歸納法證明表達式

编辑

證明

F

n

=

1

5

[

φ

n

(

1

φ

)

n

]

{\displaystyle F_{n}={\frac {1}{\sqrt {5}}}[\varphi ^{n}-(1-\varphi )^{n}]}

,其中

φ

{\displaystyle \varphi }

為黃金比例

1

+

5

2

{\displaystyle {\frac {1+{\sqrt {5}}}{2}}}

n

{\displaystyle n}

為任意整數

n

{\displaystyle n}

為非負整數

n

=

0

{\displaystyle n=0}

時,

1

5

[

φ

0

(

1

φ

)

0

]

=

1

5

[

1

1

]

=

0

=

F

0

{\displaystyle {\frac {1}{\sqrt {5}}}[\varphi ^{0}-(1-\varphi )^{0}]={\frac {1}{\sqrt {5}}}[1-1]=0=F_{0}}

,成立

n

=

1

{\displaystyle n=1}

時,

1

5

[

φ

1

(

1

φ

)

1

]

=

1

5

[

φ

1

+

φ

]

=

1

5

[

2

φ

1

]

=

1

5

×

5

=

1

=

F

1

{\displaystyle {\frac {1}{\sqrt {5}}}[\varphi ^{1}-(1-\varphi )^{1}]={\frac {1}{\sqrt {5}}}[\varphi -1+\varphi ]={\frac {1}{\sqrt {5}}}[2\varphi -1]={\frac {1}{\sqrt {5}}}\times {\sqrt {5}}=1=F_{1}}

,成立

設當

n

=

k

{\displaystyle n=k}

n

=

k

+

1

{\displaystyle n=k+1}

時皆成立,即

F

k

=

1

5

[

φ

k

(

1

φ

)

k

]

{\displaystyle F_{k}={\frac {1}{\sqrt {5}}}[\varphi ^{k}-(1-\varphi )^{k}]}

F

k

+

1

=

1

5

[

φ

k

+

1

(

1

φ

)

k

+

1

]

{\displaystyle F_{k+1}={\frac {1}{\sqrt {5}}}[\varphi ^{k+1}-(1-\varphi )^{k+1}]}

n

=

k

+

2

{\displaystyle n=k+2}

F

k

+

2

=

F

k

+

1

+

F

k

=

1

5

[

φ

k

+

1

(

1

φ

)

k

+

1

]

+

1

5

[

φ

k

(

1

φ

)

k

]

=

1

5

[

φ

k

+

1

+

φ

k

(

1

φ

)

k

+

1

(

1

φ

)

k

]

=

1

5

{

φ

k

(

φ

+

1

)

(

1

φ

)

k

[

(

1

φ

)

+

1

]

}

=

1

5

{

φ

k

(

φ

2

)

(

1

φ

)

k

[

(

1

φ

)

2

]

}

=

1

5

{

φ

k

+

2

(

1

φ

)

k

+

2

}

{\displaystyle {\begin{aligned}F_{k+2}&=F_{k+1}+F_{k}\\&={\frac {1}{\sqrt {5}}}[\varphi ^{k+1}-(1-\varphi )^{k+1}]+{\frac {1}{\sqrt {5}}}[\varphi ^{k}-(1-\varphi )^{k}]\\&={\frac {1}{\sqrt {5}}}[\varphi ^{k+1}+\varphi ^{k}-(1-\varphi )^{k+1}-(1-\varphi )^{k}]\\&={\frac {1}{\sqrt {5}}}\left\{\varphi ^{k}({\color {brown}\varphi +1})-(1-\varphi )^{k}[{\color {green}(1-\varphi )+1}]\right\}\\&={\frac {1}{\sqrt {5}}}\left\{\varphi ^{k}({\color {brown}\varphi ^{2}})-(1-\varphi )^{k}[{\color {green}(1-\varphi )^{2}}]\right\}\\&={\frac {1}{\sqrt {5}}}\left\{\varphi ^{k+2}-(1-\varphi )^{k+2}\right\}\\\end{aligned}}}

亦成立

n

{\displaystyle n}

為非正整數

n

=

0

{\displaystyle n=0}

時,成立

n

=

1

{\displaystyle n=-1}

時,

1

5

[

φ

1

(

1

φ

)

1

]

=

1

5

[

(

φ

1

)

(

φ

)

]

=

1

5

[

2

φ

1

]

=

1

5

×

5

=

1

=

F

1

{\displaystyle {\frac {1}{\sqrt {5}}}[{\color {brown}\varphi ^{-1}}-{\color {green}(1-\varphi )^{-1}}]={\frac {1}{\sqrt {5}}}[({\color {brown}\varphi -1})-({\color {green}-\varphi })]={\frac {1}{\sqrt {5}}}[2\varphi -1]={\frac {1}{\sqrt {5}}}\times {\sqrt {5}}=1=F_{-1}}

,成立

設當

n

=

k

{\displaystyle n=-k}

n

=

k

1

{\displaystyle n=-k-1}

時皆成立,即

F

k

=

1

5

[

φ

k

(

1

φ

)

k

]

{\displaystyle F_{-k}={\frac {1}{\sqrt {5}}}[\varphi ^{-k}-(1-\varphi )^{-k}]}

F

k

1

=

1

5

[

φ

k

1

(

1

φ

)

k

1

]

{\displaystyle F_{-k-1}={\frac {1}{\sqrt {5}}}[\varphi ^{-k-1}-(1-\varphi )^{-k-1}]}

n

=

k

2

{\displaystyle n=-k-2}

F

k

2

=

F

k

F

k

1

=

1

5

[

φ

k

(

1

φ

)

k

]

1

5

[

φ

k

1

(

1

φ

)

k

1

]

=

1

5

[

φ

k

φ

k

1

(

1

φ

)

k

+

(

1

φ

)

k

1

]

=

1

5

{

φ

k

1

(

φ

1

)

(

1

φ

)

k

1

[

(

1

φ

)

1

]

}

=

1

5

{

φ

k

1

(

φ

1

)

(

1

φ

)

k

1

[

(

1

φ

)

1

]

}

=

1

5

{

φ

k

2

(

1

φ

)

k

2

}

{\displaystyle {\begin{aligned}F_{-k-2}&=F_{-k}-F_{-k-1}\\&={\frac {1}{\sqrt {5}}}[\varphi ^{-k}-(1-\varphi )^{-k}]-{\frac {1}{\sqrt {5}}}[\varphi ^{-k-1}-(1-\varphi )^{-k-1}]\\&={\frac {1}{\sqrt {5}}}[\varphi ^{-k}-\varphi ^{-k-1}-(1-\varphi )^{-k}+(1-\varphi )^{-k-1}]\\&={\frac {1}{\sqrt {5}}}\left\{\varphi ^{-k-1}({\color {brown}\varphi -1})-(1-\varphi )^{-k-1}[{\color {green}(1-\varphi )-1}]\right\}\\&={\frac {1}{\sqrt {5}}}\left\{\varphi ^{-k-1}({\color {brown}\varphi ^{-1}})-(1-\varphi )^{-k-1}[{\color {green}(1-\varphi )^{-1}}]\right\}\\&={\frac {1}{\sqrt {5}}}\left\{\varphi ^{-k-2}-(1-\varphi )^{-k-2}\right\}\\\end{aligned}}}

亦成立

因此,根據數學歸納法原理,此表達式對於任意整數

n

{\displaystyle n}

皆成立

線性代數解法

编辑

(

F

n

+

2

F

n

+

1

)

=

(

1

1

1

0

)

(

F

n

+

1

F

n

)

{\displaystyle {\begin{pmatrix}F_{n+2}\\F_{n+1}\end{pmatrix}}={\begin{pmatrix}1&1\\1&0\end{pmatrix}}\cdot {\begin{pmatrix}F_{n+1}\\F_{n}\end{pmatrix}}}

(

F

n

+

2

F

n

+

1

F

n

+

1

F

n

)

=

(

1

1

1

0

)

n

+

1

{\displaystyle {\begin{pmatrix}F_{n+2}&F_{n+1}\\F_{n+1}&F_{n}\end{pmatrix}}={\begin{pmatrix}1&1\\1&0\end{pmatrix}}^{n+1}}

稱為「斐波那契Q矩陣」(Fibonacci Q-Matrix)[1]

構建一個矩陣方程

编辑

J

n

{\displaystyle J_{n}}

為第

n

{\displaystyle n}

個月有生育能力的兔子數量,

A

n

{\displaystyle A_{n}}

為這一月份的兔子數量。

(

J

n

+

1

A

n

+

1

)

=

(

0

1

1

1

)

(

J

n

A

n

)

,

{\displaystyle {J_{n+1} \choose A_{n+1}}={\begin{pmatrix}0&1\\1&1\end{pmatrix}}\cdot {J_{n} \choose A_{n}},}

上式表達了兩個月之間,兔子數目之間的關係。而要求的是,

A

n

+

1

{\displaystyle A_{n+1}}

的表達式。

求矩陣的特徵值:λ

编辑

根据特征值的计算公式,我们需要算出来

|

λ

1

1

1

λ

|

=

0

{\displaystyle {\begin{vmatrix}-\lambda &1\\1&1-\lambda \\\end{vmatrix}}=0}

所对应的解。

展开行列式有:

λ

(

1

λ

)

1

×

1

=

λ

2

λ

1

{\displaystyle -\lambda (1-\lambda )-1\times 1=\lambda ^{2}-\lambda -1}

故當行列式的值為 0,解得

λ

1

=

1

2

(

1

+

5

)

{\displaystyle \lambda _{1}={\frac {1}{2}}(1+{\sqrt {5}})}

λ

2

=

1

2

(

1

5

)

{\displaystyle \lambda _{2}={\frac {1}{2}}(1-{\sqrt {5}})}

特徵向量

编辑

將兩個特徵值代入

(

(

0

1

1

1

)

λ

E

)

x

=

0

{\displaystyle \left({\begin{pmatrix}0&1\\1&1\end{pmatrix}}-\lambda \cdot E\right)\cdot {\vec {x}}=0}

求特徵向量

x

{\displaystyle {\vec {x}}}

x

1

{\displaystyle {\vec {x}}_{1}}

=

(

1

1

2

(

1

+

5

)

)

{\displaystyle {\begin{pmatrix}1\\{\frac {1}{2}}(1+{\sqrt {5}})\end{pmatrix}}}

x

2

{\displaystyle {\vec {x}}_{2}}

=

(

1

1

2

(

1

5

)

)

{\displaystyle {\begin{pmatrix}1\\{\frac {1}{2}}(1-{\sqrt {5}})\end{pmatrix}}}

分解首向量

编辑

第一個月的情況是兔子一對,新生0對。

(

J

1

A

1

)

=

(

0

1

)

{\displaystyle {J_{1} \choose A_{1}}={\begin{pmatrix}0\\1\end{pmatrix}}}

將它分解為用特徵向量表示。

(

0

1

)

=

1

5

(

1

1

2

(

1

+

5

)

)

1

5

(

1

1

2

(

1

5

)

)

{\displaystyle {\begin{pmatrix}0\\1\end{pmatrix}}={\frac {1}{\sqrt {5}}}\cdot {\begin{pmatrix}1\\{\frac {1}{2}}(1+{\sqrt {5}})\end{pmatrix}}-{\frac {1}{\sqrt {5}}}\cdot {\begin{pmatrix}1\\{\frac {1}{2}}(1-{\sqrt {5}})\end{pmatrix}}}

(4)

用數學歸納法證明

编辑

(

J

n

+

1

A

n

+

1

)

=

(

0

1

1

1

)

(

J

n

A

n

)

{\displaystyle {J_{n+1} \choose A_{n+1}}={\begin{pmatrix}0&1\\1&1\end{pmatrix}}\cdot {J_{n} \choose A_{n}}}

=

λ

(

J

n

A

n

)

{\displaystyle \lambda \cdot {J_{n} \choose A_{n}}}

可得到

(

J

n

+

1

A

n

+

1

)

=

(

0

1

1

1

)

n

(

J

1

A

1

)

=

λ

n

(

J

1

A

1

)

{\displaystyle {J_{n+1} \choose A_{n+1}}={\begin{pmatrix}0&1\\1&1\end{pmatrix}}^{n}\cdot {J_{1} \choose A_{1}}=\lambda ^{n}\cdot {J_{1} \choose A_{1}}}

(5)

化簡矩陣方程

编辑

將(4) 代入 (5)

(

J

n

+

1

A

n

+

1

)

=

λ

n

[

1

5

(

1

1

2

(

1

+

5

)

)

1

5

(

1

1

2

(

1

5

)

)

]

{\displaystyle {J_{n+1} \choose A_{n+1}}=\lambda ^{n}\cdot \left[{\frac {1}{\sqrt {5}}}\cdot {\begin{pmatrix}1\\{\frac {1}{2}}(1+{\sqrt {5}})\end{pmatrix}}-{\frac {1}{\sqrt {5}}}\cdot {\begin{pmatrix}1\\{\frac {1}{2}}(1-{\sqrt {5}})\end{pmatrix}}\right]}

根據3

(

J

n

+

1

A

n

+

1

)

=

1

5

λ

1

n

(

1

1

2

(

1

+

5

)

)

1

5

λ

2

n

(

1

1

2

(

1

5

)

)

{\displaystyle {J_{n+1} \choose A_{n+1}}={\frac {1}{\sqrt {5}}}\cdot \lambda _{1}^{n}\cdot {\begin{pmatrix}1\\{\frac {1}{2}}(1+{\sqrt {5}})\end{pmatrix}}-{\frac {1}{\sqrt {5}}}\cdot \lambda _{2}^{n}\cdot {\begin{pmatrix}1\\{\frac {1}{2}}(1-{\sqrt {5}})\end{pmatrix}}}

求A的表達式

编辑

現在在6的基礎上,可以很快求出

A

n

+

1

{\displaystyle A_{n+1}}

的表達式,將兩個特徵值代入6中

A

n

+

1

=

1

5

λ

1

n

+

1

1

5

λ

2

n

+

1

{\displaystyle A_{n+1}={\frac {1}{\sqrt {5}}}\cdot \lambda _{1}^{n+1}-{\frac {1}{\sqrt {5}}}\cdot \lambda _{2}^{n+1}}

A

n

+

1

=

1

5

(

λ

1

n

+

1

λ

2

n

+

1

)

{\displaystyle A_{n+1}={\frac {1}{\sqrt {5}}}\cdot (\lambda _{1}^{n+1}-\lambda _{2}^{n+1})}

A

n

+

1

=

1

5

{

[

1

2

(

1

+

5

)

]

n

+

1

[

1

2

(

1

5

)

]

n

+

1

}

{\displaystyle A_{n+1}={\frac {1}{\sqrt {5}}}\cdot \left\{\left[{\frac {1}{2}}\left(1+{\sqrt {5}}\right)\right]^{n+1}-\left[{\frac {1}{2}}(1-{\sqrt {5}})\right]^{n+1}\right\}}

(7)

(7)即為

A

n

+

1

{\displaystyle A_{n+1}}

的表達式

數論解法

编辑

實際上,如果將斐波那契數列的通項公式寫成

a

n

a

n

1

a

n

2

=

0

{\displaystyle a_{n}-a_{n-1}-a_{n-2}=0}

,即可利用解二階線性齊次遞迴關係式的方法,寫出其特徵多項式

λ

2

λ

1

=

0

{\displaystyle \lambda ^{2}-\lambda -1=0}

(該式和表達斐波那契數列的矩陣的特徵多項式一致),然後解出

λ

1

{\displaystyle \lambda _{1}}

=

1

2

(

1

+

5

)

{\displaystyle {\frac {1}{2}}(1+{\sqrt {5}})}

λ

2

{\displaystyle \lambda _{2}}

=

1

2

(

1

5

)

{\displaystyle {\frac {1}{2}}(1-{\sqrt {5}})}

,即有

a

n

=

c

1

λ

1

n

+

c

2

λ

2

n

{\displaystyle a_{n}=c_{1}\lambda _{1}^{n}+c_{2}\lambda _{2}^{n}}

,其中

c

1

,

c

2

{\displaystyle c_{1},c_{2}}

为常数。我们知道

a

0

=

0

,

a

1

=

1

{\displaystyle a_{0}=0,a_{1}=1}

,因此

{

c

1

+

c

2

=

0

c

1

(

1

+

5

)

2

+

c

2

(

1

5

)

2

=

1

{\displaystyle {\begin{cases}c_{1}+c_{2}=0\\{\frac {c_{1}(1+{\sqrt {5}})}{2}}+{\frac {c_{2}(1-{\sqrt {5}})}{2}}=1\end{cases}}}

,解得

c

1

=

1

5

,

c

2

=

1

5

{\displaystyle c_{1}={\frac {1}{\sqrt {5}}},c_{2}=-{\frac {1}{\sqrt {5}}}}

組合數解法

编辑

F

n

=

i

=

0

(

n

i

i

)

{\displaystyle F_{n}=\sum _{i=0}^{\infty }{\binom {n-i}{i}}}

[2]

F

n

1

+

F

n

=

i

=

0

(

n

1

i

i

)

+

i

=

0

(

n

i

i

)

=

1

+

i

=

1

(

n

i

i

1

)

+

i

=

1

(

n

i

i

)

=

1

+

i

=

1

(

n

+

1

i

i

)

=

i

=

0

(

n

+

1

i

i

)

=

F

n

+

1

{\displaystyle F_{n-1}+F_{n}=\sum _{i=0}^{\infty }{\binom {n-1-i}{i}}+\sum _{i=0}^{\infty }{\binom {n-i}{i}}=1+\sum _{i=1}^{\infty }{\binom {n-i}{i-1}}+\sum _{i=1}^{\infty }{\binom {n-i}{i}}=1+\sum _{i=1}^{\infty }{\binom {n+1-i}{i}}=\sum _{i=0}^{\infty }{\binom {n+1-i}{i}}=F_{n+1}}

黃金比例恆等式解法

编辑

φ

{\displaystyle \varphi }

為黃金比例

1

+

5

2

{\displaystyle {\frac {1+{\sqrt {5}}}{2}}}

,則有恆等式

φ

n

=

F

n

1

+

φ

F

n

{\displaystyle \varphi ^{n}=F_{n-1}+\varphi F_{n}}

(

1

φ

)

n

=

F

n

+

1

φ

F

n

{\displaystyle (1-\varphi )^{n}=F_{n+1}-\varphi F_{n}}

,其中

n

{\displaystyle n}

為任意整數[註 1],則

φ

n

(

1

φ

)

n

=

(

F

n

1

+

φ

F

n

)

(

F

n

+

1

φ

F

n

)

=

(

F

n

1

F

n

+

1

)

+

2

φ

F

n

=

F

n

+

2

φ

F

n

=

F

n

(

2

φ

1

)

=

F

n

×

5

{\displaystyle {\begin{aligned}\varphi ^{n}-(1-\varphi )^{n}&=(F_{n-1}+\varphi F_{n})-(F_{n+1}-\varphi F_{n})\\&=(F_{n-1}-F_{n+1})+2\varphi F_{n}\\&=-F_{n}+2\varphi F_{n}\\&=F_{n}(2\varphi -1)\\&=F_{n}\times {\sqrt {5}}\\\end{aligned}}}

因此得到

F

n

{\displaystyle F_{n}}

的一般式:

F

n

=

1

5

[

φ

n

(

1

φ

)

n

]

=

1

5

[

(

1

+

5

2

)

n

(

1

5

2

)

n

]

{\displaystyle {\begin{aligned}F_{n}&={\frac {1}{\sqrt {5}}}[\varphi ^{n}-(1-\varphi )^{n}]\\&={\frac {1}{\sqrt {5}}}\left[({\frac {1+{\sqrt {5}}}{2}})^{n}-({\frac {1-{\sqrt {5}}}{2}})^{n}\right]\\\end{aligned}}}

此一般式對任意整數

n

{\displaystyle n}

成立

近似值

编辑

n

{\displaystyle n}

為足夠大的正整數時,则

F

n

1

5

φ

n

=

1

5

[

1

2

(

1

+

5

)

]

n

0.4472135955

1.61803398875

n

{\displaystyle F_{n}\approx {\frac {1}{\sqrt {5}}}\varphi ^{n}={\frac {1}{\sqrt {5}}}\cdot \left[{\frac {1}{2}}\left(1+{\sqrt {5}}\right)\right]^{n}\approx 0.4472135955\cdot 1.61803398875^{n}}

F

n

1

5

(

1

φ

)

n

=

1

5

[

1

2

(

1

5

)

]

n

0.4472135955

(

0.61803398875

)

n

{\displaystyle F_{-n}\approx -{\frac {1}{\sqrt {5}}}(1-\varphi )^{-n}=-{\frac {1}{\sqrt {5}}}\cdot \left[{\frac {1}{2}}\left(1-{\sqrt {5}}\right)\right]^{-n}\approx -0.4472135955\cdot (-0.61803398875)^{-n}}

用計算機求解

编辑

可通過編程觀察斐波那契數列。分為兩類問題,一種已知數列中的某一項,求序數。第二種是已知序數,求該項的值。

可通過遞歸遞推的算法解決此兩個問題。

事實上當

n

{\displaystyle n}

相當巨大的時候,O(n)的遞推/遞歸非常慢……這時候要用到矩陣快速幂這一技巧,可以使遞迴加速到O(logn)。

关联

链接